Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.
Dear Neighbor,

East Valley Water District has committed to enhancing and preserving the quality of life for our community through innovative leadership and world class public service. We proudly serve over 103,000 people living in the cities of Highland and San Bernardino along with areas of unincorporated San Bernardino County.

We value strategic planning and embracing opportunities inside and outside of the organization for the benefit of the community we serve. This year we continued to invest in projects that will leave a lasting impression and protect the reliability of our water and wastewater services. Over the last year we replaced aging pipelines, refurbished a storage tank, installed smart meters, and continued construction on the Sterling Natural Resource Center.

In addition to construction projects, we began preparing for the future in a new way. Through a partnership with the San Bernardino City Unified School District and Indian Springs High School we launched a pathway for students to prepare for careers in the water industry. This program will introduce valuable skills that are key steps for the success of our local young adults.

EAST VALLEY WATER DISTRICT IS MORE THAN A UTILITY PROVIDER, WE ARE A FAMILY OF DEDICATED EMPLOYEES, NEIGHBORS, AND COMMUNITY PARTNERS.

In the following pages you will find important information about the safety of your drinking water. On behalf of the East Valley Water District family, I would like to thank you for the opportunity to serve this community. We invite and encourage you to be engaged with our projects and programs.

Yours in Service,

John Mura
General Manager/CEO
In the summer months, watering your yard can account for 60% of your total water use. Using water efficiently outdoors can save tens of thousands of gallons of water. Simple ways to reduce water waste at home include:

- Avoid water run-off when irrigating
- Water between 6pm – 6am
- Don’t water 2 days after measurable rainfall

Install a Weather Based Irrigation Controller
Automatically Adjusts to the Weather
Get a new weather based controller through the direct installation program at no cost to you. For details visit eastvalley.org/rebates

More than 625 indoor and outdoor rebates were issued in 2019-2020.

Visit the District’s demonstration garden to view a colorful display of over 60 low water use plant species that are easy to maintain and are appropriate for our region’s climate.

Visit eastvalley.org/conservation for an events calendar. Workshops are held throughout the year and make a fun activity for the whole family.

The Environmental Protection Agency (EPA) and the State Water Resources Control Board (SWRCB) have strict standards that water providers, like EVWD, must follow for treating and providing drinking water to our community. These requirements are in place to prevent bacteria, viruses, and other organisms from contaminating drinking water.

East Valley Water District’s primary water quality goal is to protect the health and safety of residents. Specific and ongoing measures are in place to sample, monitor, and treat water year-round, including:

- Weekly, monthly, quarterly, annually and tri-annually sampling
- Samples are collected routinely at key locations throughout the distribution system
- Hydrant flushing is performed to remove sediment that can cause water to appear dirty or discolored
- The use of filtration and small levels of disinfectants, such as chlorine, to remove or kill bacteria

Tap water provided by the District is tested year-round to ensure the quality of water served to you.

East Valley Water District’s primary water quality goal is to protect the health and safety of residents. Specific and ongoing measures are in place to sample, monitor, and treat water year-round, including:

- Weekly, monthly, quarterly, annually and tri-annually sampling
- Samples are collected routinely at key locations throughout the distribution system
- Hydrant flushing is performed to remove sediment that can cause water to appear dirty or discolored
- The use of filtration and small levels of disinfectants, such as chlorine, to remove or kill bacteria

Visit eastvalley.org/waterquality for more information online at eastvalley.org/waterquality

474 HYDRANTS FLUSHED
646 HYDRANTS REPAIRED OR REPLACED & PAINTED

The scent of chlorine in tap water is quite common. This is because it’s added to the water distribution system to ensure the water is free of harmful bacteria and other microorganisms.

More than 625 indoor and outdoor rebates were issued in 2019-2020.
With a service area just over 30 square-miles, the District has three sources for water, the Santa Ana River, the Bunker Hill Groundwater Basin, and the State Water Project. The Santa Ana River starts with natural springs and snow melt high in the San Bernardino Mountains. While many different agencies enjoy the use of the Santa Ana River, EVWD receives water just south of the Seven Oaks Dam. Along the way, it powers the Southern California Edison SAR #1 and #3 Hydroelectric Plant, and then travels down the North Fork Canal to the Philip A. Disch Surface Water Treatment Plant (Plant 134). Plant 134 is a state-of-the-art facility that uses an ultra-filtration treatment method and can treat up to 8 million gallons of water a day. Groundwater is drawn from the Bunker Hill Basin, a natural underground storage area made up of soil, sand, and gravel. Rainwater percolates down and is accessed using a series of 15 wells that pump water from different depths. With the range of elevations within the service area, it is important to have these wells located throughout the District, for both emergency preparedness and system efficiencies. Well sites are positioned across the District, from the undeveloped areas like Plant 125 east of Cone Camp Road to Plant 24 on the corner of Lynwood Drive and Harrison Street, which is also used as a public park.

A portion of the District’s water is imported from Northern California through the State Water Project. EVWD has access to this water through San Bernardino Valley Municipal Water District. Imported water is an important component of the District’s long-term water plan. Its use and availability varies year-to-year.

Groundwater is also where our water comes from. With a service area just over 30 square-miles, the District has three sources for water, the Santa Ana River, the Bunker Hill Groundwater Basin, and the State Water Project. The Santa Ana River starts with natural springs and snow melt high in the San Bernardino Mountains. While many different agencies enjoy the use of the Santa Ana River, EVWD receives water just south of the Seven Oaks Dam. Along the way, it powers the Southern California Edison SAR #1 and #3 Hydroelectric Plant, and then travels down the North Fork Canal to the Philip A. Disch Surface Water Treatment Plant (Plant 134). Plant 134 is a state-of-the-art facility that uses an ultra-filtration treatment method and can treat up to 8 million gallons of water a day. Groundwater is drawn from the Bunker Hill Basin, a natural underground storage area made up of soil, sand, and gravel. Rainwater percolates down and is accessed using a series of 15 wells that pump water from different depths. With the range of elevations within the service area, it is important to have these wells located throughout the District, for both emergency preparedness and system efficiencies. Well sites are positioned across the District, from the undeveloped areas like Plant 125 east of Cone Camp Road to Plant 24 on the corner of Lynwood Drive and Harrison Street, which is also used as a public park.

A portion of the District’s water is imported from Northern California through the State Water Project. EVWD has access to this water through San Bernardino Valley Municipal Water District. Imported water is an important component of the District’s long-term water plan. Its use and availability varies year-to-year.

Groundwater is the primary source of water for EVWD, with imported water from San Diego and imported State Water Project water accounting for only a small percentage. With a service area just over 30 square-miles, the District has three sources for water, the Santa Ana River, the Bunker Hill Groundwater Basin, and the State Water Project. The Santa Ana River starts with natural springs and snow melt high in the San Bernardino Mountains. While many different agencies enjoy the use of the Santa Ana River, EVWD receives water just south of the Seven Oaks Dam. Along the way, it powers the Southern California Edison SAR #1 and #3 Hydroelectric Plant, and then travels down the North Fork Canal to the Philip A. Disch Surface Water Treatment Plant (Plant 134). Plant 134 is a state-of-the-art facility that uses an ultra-filtration treatment method and can treat up to 8 million gallons of water a day. Groundwater is drawn from the Bunker Hill Basin, a natural underground storage area made up of soil, sand, and gravel. Rainwater percolates down and is accessed using a series of 15 wells that pump water from different depths. With the range of elevations within the service area, it is important to have these wells located throughout the District, for both emergency preparedness and system efficiencies. Well sites are positioned across the District, from the undeveloped areas like Plant 125 east of Cone Camp Road to Plant 24 on the corner of Lynwood Drive and Harrison Street, which is also used as a public park.

A portion of the District’s water is imported from Northern California through the State Water Project. EVWD has access to this water through San Bernardino Valley Municipal Water District. Imported water is an important component of the District’s long-term water plan. Its use and availability varies year-to-year.

More information online at eastvalley.org/waterquality
2019 water quality data

Microbiological Contaminants Sampled in 2019

<table>
<thead>
<tr>
<th>Chemical</th>
<th>MCL (MCLG)</th>
<th>PHG (MCL)</th>
<th>Average Level Detected</th>
<th>Unit of Measure</th>
<th>Range of Detection</th>
<th>Violation</th>
<th>Y/N</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria</td>
<td><5% Positive</td>
<td>0</td>
<td>A</td>
<td>Present (P) or Absent (A)</td>
<td>NON-DETECT N</td>
<td>Naturally present in the environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform and E. Coli</td>
<td>>1 Positive</td>
<td>0</td>
<td>A</td>
<td>Present (P) or Absent (A)</td>
<td>NON-DETECT N</td>
<td>Human/Animal Waste</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colonies/mL. A measure of the number of coliform colonies (bacteria) per known volume of water.

< Means “Less Than”: For example <2.0 means the lowest detectable level is 0.2 and that the contamination was less than 0.2 and therefore not detected.

> Means “Greater Than”: For example >1 means any sample tested having a value greater than 1.

Disinfection Byproducts, Disinfection Residuals, and Disinfection Byproduct Precursors

<table>
<thead>
<tr>
<th>Chemical</th>
<th>MCL</th>
<th>PHG (MCL)</th>
<th>Average Level Detected</th>
<th>Unit of Measure</th>
<th>Range of Detection</th>
<th>Violation</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes* (TTHM)</td>
<td>80 µg/L</td>
<td>n/a</td>
<td>74</td>
<td>ppb</td>
<td>0.87</td>
<td>N</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Haloacetic Acids* (HAAs)</td>
<td>60 µg/L</td>
<td>n/a</td>
<td>15</td>
<td>ppb</td>
<td>0.21</td>
<td>N</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorine</td>
<td>MRDL = 4.0 mg/L</td>
<td>MRDL = 4.0 mg/L</td>
<td>0.67</td>
<td>ppm</td>
<td>0.20-2.02</td>
<td>Drinking water disinfectant</td>
<td></td>
</tr>
</tbody>
</table>

* TTHM and HAAs are sampled quarterly and results are calculated based on a locational running annual average per State Water Resources Control Board Maximum Residual Disinfectant Level Rule. (MRDL) The highest level of a disinfectant allowed to drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

N/A: Not applicable.

Radioactive Contaminates Sampled in 2019

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Action Level</th>
<th>Sites Above</th>
<th>PHG (MCL)</th>
<th>Unit of Measure</th>
<th># Samples Taken</th>
<th>50th Percentile</th>
<th>Violation</th>
<th>Y/N</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha Particle Activity</td>
<td>(when Gross Alpha particle activity exceeds 50 µCi/L, then analyze for uranium)</td>
<td>15 pCi/L</td>
<td>N/A</td>
<td>0 pCi/L</td>
<td>0</td>
<td>Decay of natural and man made deposits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>20 pCi/L</td>
<td>N/A</td>
<td>0.201</td>
<td>pCi/L</td>
<td><0.038-0.96</td>
<td>Decay of natural and man made deposits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If Uranium exceeds 20 pCi/L, then monitor for four quarters. If the average of four quarters is <20, then you are in uranium compliance. But must calculate gross alpha minus uranium Counting Error (CE) pCi/L. If the result is less than 15 pCi/L, then you are in Gross Alpha MCL compliance.

East Valley Water District is within MCL standards after these analysis calculations.

Inorganic Chemical Analyses Samples Collected 2016-2019

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Average Level Detected</th>
<th>Unit of Measure</th>
<th>Range of Detection</th>
<th>Violation</th>
<th>Y/N</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>ppm</td>
<td>0.009</td>
<td><0.04-0.075</td>
<td>N</td>
<td>Erosion of natural deposits; residue from some surface water treatment processes</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>0.86</td>
<td>0.15-1.5</td>
<td>N</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>3.86</td>
<td>0.56-77</td>
<td>N</td>
<td>Runoff of leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits</td>
<td></td>
</tr>
</tbody>
</table>

Surface Water Turbidity

<table>
<thead>
<tr>
<th>Chemical</th>
<th>MCL (NTU)</th>
<th>Secondary MCL (NTU)</th>
<th>Highest Found</th>
<th>Range of Detection</th>
<th>Violation</th>
<th>Y/N</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>TT = 1NTU</td>
<td>5</td>
<td>0.5</td>
<td><0.1-0.5</td>
<td>N</td>
<td>Soil Runoff</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Contaminant Level (MCL). The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs or MCLGs as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Lead and Copper at Residential Taps (Inorganic Contaminates) Sampled in 2018

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Action Level</th>
<th>Sites Above</th>
<th>PHG (MCL)</th>
<th>Unit of Measure</th>
<th># Samples Taken</th>
<th>50th Percentile</th>
<th>Violation</th>
<th>Y/N</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15</td>
<td>1</td>
<td>0.2</td>
<td>ppb</td>
<td>61</td>
<td>0</td>
<td>N</td>
<td>Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>1500</td>
<td>0</td>
<td>0.3</td>
<td>ppb</td>
<td>61</td>
<td>300</td>
<td>N</td>
<td>Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits; leaching from wood preservatives</td>
<td></td>
</tr>
</tbody>
</table>

Regulated Secondary Contaminants

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Normal M/L</th>
<th>Action Level</th>
<th>Average Level Detected</th>
<th>Unit of Measure</th>
<th>Range of Detection</th>
<th>Violation</th>
<th>Y/N</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron</td>
<td>N/A</td>
<td>1</td>
<td>0.35</td>
<td>ppm</td>
<td>0.5-0.79</td>
<td>N</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>250</td>
<td>1</td>
<td>25.5</td>
<td>ppm</td>
<td>7.9-53</td>
<td>N</td>
<td>Runoff from natural deposits; seawater inflows</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>15</td>
<td>3.0 CU</td>
<td><3.0</td>
<td>Unit</td>
<td>ND<3.0</td>
<td>N</td>
<td>Naturally-occurring organic matter</td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>1600</td>
<td>2</td>
<td>441</td>
<td>micro mho/cm</td>
<td>300-760</td>
<td>N</td>
<td>Substances that form ions when in water; seawater inflows</td>
<td></td>
</tr>
<tr>
<td>Ground Water Turbidity</td>
<td>5</td>
<td>0</td>
<td>0.02</td>
<td>NTU</td>
<td><0.1-2.8</td>
<td>N</td>
<td>Soil runoff</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>50</td>
<td>20</td>
<td>0.048</td>
<td>ppb</td>
<td>ND<0.048</td>
<td>N</td>
<td>Leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>TON</td>
<td>1-1 TON</td>
<td>N</td>
<td>Naturally-occurring organic materials</td>
<td></td>
</tr>
</tbody>
</table>
LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. East Valley Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (1-800-426-4791).

NITRATE (NO3)

Nitrates in drinking water at levels above 45 parts per million (ppm) is a health risk for infants less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant’s blood to carry oxygen, resulting in a serious illness. Symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 ppm may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant or are pregnant, you should ask for advice from your health care provider.

TOTAL TRIHALOMETHANES (TTHM) AND HALOACETIC ACIDS (HAAS)

Federal and California/State MCL of 80 ppb-TTHM and 60 ppb-HAAS are based on one year's averages. Total Organic Carbon (TOC) has no health effects. However, total organic carbon provides a medium for the formation of disinfection by-products. These by-products include TTHM and HAAS. Drinking water containing these by-products in excess of the MCL may lead to liver or kidney problems, or nervous system effects, and may lead to an increased risk of cancer. The District did not exceed the MCL for TTHM or HAAS for the testing period represented in this report.
EVWD completed Source Water Assessments in March 2002 on all of our active groundwater wells. The report includes a section listing the vulnerability to activities associated with contaminants detected in water supplies. To aid in your understanding that these occurrences can further contribute to groundwater contamination, we have included the following list of potentially contaminating activities.

• Airport: Maintenance, Fueling Area
• Agricultural Drainage
• Artificial Recharge Projects: Spreading Basins
• Automobile: Body Shops, Car Washes, Gas Stations, Repair Shops
• Boat Services: Repair, Refinishing
• Chemical: Petroleum Processing, Storage
• Contractor or Government Agency Equipment
• Storage Yards
• Dry Cleaners
• Fertilizer, Pesticide, Herbicide Application
• Fleet, Truck, Bus Terminals
• Funeral Services, Cemeteries
• Golf Courses
• Historic Gas Stations
• Housing: High Density
• Junk: Scrap, Salvage Yards
• Known Contaminant Plumes
• Lumber Processing and Manufacturing
• Machine Shops
• Metal Plating: Finishing, Fabricating
• Military Installations
• Parking Lots, Malls
• Parks, Schools
• Septic Systems: High Density, Low Density
• Sewer Collection Systems
• Surface Water: Streams, Lakes, Rivers
• Transportation Corridors: Roads, Right-of-Ways
• Underground Storage Tanks: Contained Leaking Tanks
• Oil Stations: Maintenance Areas
• Waste Transfer: Recycling Stations
• Wells, Water Supply, Agricultural, Irrigation, Abandoned

For more information on specific wells, contact the Engineering Department at (909) 888-8986.

PERFLUOROALKYL AND POLYFLUOROALKYL SUBSTANCES (PFAS)

With statewide concern regarding the potential contamination of drinking water supplies by PFAS, the SWRCB issued mandates for sampling of sources likely to be impacted. PFAS is a substance linked to the manufacturing and use of many daily products like Teflon, waterproofing and fast food packaging. In contrast to other contaminants, PFAS is considered the forever chemical due to its long chain bond. Although this contaminant is persistent, effective treatment methods have been identified and approved for drinking water. Like other agencies, the District completed initial sampling for these contaminants. To date, the District of the forever chemical due to its long chain bond. Although this contaminant is persistent, effective treatment methods have been identified and approved for drinking water. Like other agencies, the District completed initial sampling for these contaminants.

In our efforts to keep water flowing, the District proactively performs infrastructure enhancements.

RECENT IMPROVEMENTS
• In 2019, the District replaced 1,600 linear feet of new water main on six streets
• Rehabilitated one reservoir, two water wells, and five booster pumps
• Installed tank mixing equipment at Plant 108 to prevent water stagnation

LOOKING FORWARD
• Pipeline improvements will continue with the replacement of 1,800 linear feet of water main
• Rehabilitation of reservoirs at designated plants
• Treatment process improvements at the District’s surface water treatment plant
• Install tank mixing equipment at Plant 129’s reservoir to prevent water stagnation

Enhancing Services
ONE METER AT A TIME

Beginning in 2016, as part of EVWD’s Capital Improvement Program to enhance services, the District started the process of upgrading customers’ meter to a Smart Meter at no additional cost to residents. By making the switch, consumption information is provided electronically to both customers and the District and the need for manual meter reading is significantly reduced. This improvement allows staff to focus on projects like system maintenance and pipeline replacements.

DID YOU KNOW?
The District delivers an average of 15 million gallons of water per day to customers. In comparison, the world’s largest aquarium tank can hold up to 12.87 million gallons.

KNOWLEDGE IS POWER

Not sure if you have a Smart Meter? Contact Customer Service at (909) 889-9501 for an upgrade status.

More information is available at https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/PFOA_PFOS.html.
Preparing Tomorrow’s Water Leaders

Students from San Bernardino and Highland can now prepare for a career in the water and wastewater industry. In February 2020, San Bernardino City Unified School District (SBCUSD) and EVWD celebrated the launch of the Water and Resource Management Career Pathway with a ribbon cutting ceremony alongside students, local leaders, and community partners at Indian Springs High School (ISHS).

By training local students in the unique skillset of wastewater treatment, members of this community could be hired to fill technical positions. SBCUSD has more than 50 pathways designed to prepare high school students for college and careers. The addition of the new Water and Resource Management Pathway brings the total to three pathways at ISHS alongside the Academy of Health Sciences and Medical Technology and Academy of Manufacturing and Product Development Design.

Funding for this Sterling Natural Resource Center project has been provided in full or in part by the Proposition 1 - the Water Quality, Supply, and Infrastructure Improvement Act of 2014 and the Clean Water State Revolving Fund through an agreement with the State Water Resources Control Board. California’s Clean Water State Revolving Fund is capitalized through a variety of funding sources, including grants from the United States Environmental Protection Agency and state bond proceeds.

Improvements to the Surrounding Area Include Street Paving, Water Lines, Sidewalks, and More.
East Valley Water District was formed in 1954 and provides water and wastewater services to 103,000 residents within the cities of San Bernardino and Highland, and portions of San Bernardino County.

EVWD operates under the direction of a 5-member elected Board.

This report is a summary of the quality of the water that East Valley Water District provided to its customers in 2019. Included are details about where the water comes from, what it contains and how it compares to State and Federal standards.

In our continuing effort to keep our customers informed, we are providing you with updated information because well-informed customers are empowered water consumers. If after reading this report, you have any questions regarding your water quality, please contact Water Quality Coordinator Mike Hurst at (909) 806-4222.

OFFICE HOURS
Monday – Thursday 8:00am – 5:00pm
2nd and 4th Tuesday 9:00am – 5:00pm
Friday 7:30am – 4:30pm

DISTRICT BOARD MEETINGS
Second and Fourth Wednesday of Each Month at 5:30pm
District Headquarters Board Room
3111 Greenspot Road
Highland, CA 92346

CUSTOMER SERVICE & AFTER-HOURS EMERGENCY SERVICE (909) 889-9501

@eastvalleywaterdistrict | @eastvalleywater | @eastvalleywaterdistrict